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The results obtained from experimental studies of estrogen
carcinogenesis need validation in epidemiologic studies. Such
studies present additional challenges, however, because
variations in human populations are much greater than
those in experimental systems and in animal models. Because
epidemiologic studies are often used to evaluate modest dif-
ferences in risk factors, it is essential to minimize sources of
errors and to maximize sensitivity, reproducibility, and
specificity. In the first part of this chapter, critical factors in
designing and executing epidemiologic studies, as well as the
influence of sample collection, processing, and storage on
data reliability, are discussed. One of the most important
requirements is attaining sufficient statistical power to assess
small genetic effects and to evaluate interactions between
genetic and environmental factors. The second part of this
chapter describes innovative technology, namely, Fourier
transform-infrared (FT-IR) spectra of DNA that reveal ma-
jor structural differences at various stages of the progression
from normal to cancer tissue. The structural differences be-
come evident from wavenumber-by-wavenumber statistical
comparisons of the mean FT-IR spectra of DNA from nor-
mal to cancer tissues. This analysis has allowed distinguish-
ing benign tissues from cancer and metastatic tissues in hu-
man breast, prostate, and ovarian cancers. This analysis,
which requires less than 1 �g of DNA, is predicted to be used
for detecting early cancer-related changes at the level of
DNA, rather than at the cellular level. [J Natl Cancer Inst
Monogr 2000;27:147–56]

In the study of estrogen carcinogenesis, it has become appar-
ent that results obtained from experimental studies need valida-
tion in epidemiology/population studies. However, because
variations in a human population are much greater than those
existing in experimental systems and in animal models, popula-
tion studies present additional challenges. In addition, because
epidemiologic studies are frequently used to evaluate modest
differences in risk factors and, therefore, in their design, it is
essential to minimize sources of errors and technical variations
and to choose methods with maximum sensitivity, reproducibil-
ity, and specificity. In these regards, this chapter focuses on two
important topics: One deals with technical issues in study design
and in statistical power requirements, and the other focuses on
the development of a new technology to measure a surrogate
cancer risk marker.

Several methodologic challenges and technical hurdles in de-
signing and executing epidemiologic/population studies are dis-
cussed in this chapter. Important issues that are discussed in-
clude reproducibility of laboratory assays, limitations imposed

by the small amount of plasma/serum collected, and the validity
of using a single sample per subject. The chapter also discusses
in detail the influences of sample collection, processing, and
storage methods on data reliability. Finally, the importance of
attaining adequate statistical power by reaching the required
sample sizes is highlighted.

Several important lessons are enumerated. 1) Collection pro-
tocols need to minimize variations in factors that are not of
etiologic interest by standardizing case and control subjects on
these factors. 2) Sample collection, processing, and storage pro-
cedures must be subjected to stringent scrutiny to ensure that
variations in these steps will not mask the modest differences
expected to exist in the risk factors of interest. 3) Study design
must take into consideration the limitations linked to within-
person variation over time as well as the single sample per
subject collection method and, therefore, whenever possible, re-
peated sampling should be considered. 4) Comparison of data
collected from different laboratories may be difficult because
large variations exist in different study populations and in labo-
ratory methods. Introduction of a standardization or validation
program should be considered for multisite analyses. 5) To attain
statistical power in case–control studies, larger sample sizes are
needed for studies that are assessing small genetic effects. Fur-
thermore, if the goal of the study is to evaluate interaction
among factors, sample sizes need to be increased accordingly.

The second half of this chapter focuses on breakthrough tech-
nology referred to as the Fourier transform-infrared/statistics
model, which has been successfully adapted for analyses of
DNA changes in cancer and precancerous tissues (1–6). Infrared
spectra generated by applying infrared beams to sample DNA
produced a large number of spectra. Fourier transform spectral
data analyses, coupled with statistical comparisons, yield a few
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principal components that were shown to be sufficient for dis-
criminating DNA alterations in precancerous and cancer DNA
samples. The technology has recently been developed further to
produce cancer probability-risk score models for breast and
prostate cancers. With the use of a model developed for breast
cancer, normal tissue, primary tumors, and metastasizing tumors
were correctly discriminated at more than 80% probability. The
method also has the added advantage of requiring only a small
amount of DNA (<1.0 �g) and, therefore, is potentially suitable
for analyses of needle biopsy samples. Should the technology
live up to its promise, it will provide a highly sensitive and
reliable diagnostic and risk-assessment method for clinical and
population studies.

STUDY DESIGN CONSIDERATIONS IN THE ASSESSMENT

OF CANCER RISK IN RELATION TO GENETIC

POLYMORPHISMS

Polymorphisms in genes coding for enzymes or receptors
involved in the metabolism and intracellular transport of estro-
gens could influence the risk of developing breast cancer (7).
The case–control design is the most commonly used to evaluate
associations between genetic polymorphisms and the risk of
common diseases in the population, as well as interactions be-
tween genetic and environmental risk factors (8). In this type of
study, the odds ratio is used to measure the association between
a particular genotype and the risk of disease. The number of case
and control subjects that would need to be included in such
studies to have an 80% power (two-sided test with 5% Type I
error) to detect a genotype effect, as a function of the prevalence
of the genotype and the magnitude of the effect, is illustrated in
Fig. 1. According to Fig. 1, studies including 200 case patients
and 200 control subjects or fewer will be able to detect moderate
to large genetic effects (odds ratio [OR] � 2.0) for a wide range
of genotype prevalences. However, a minimum of 400 case pa-
tients and 400 control subjects will be needed to detect small
genetic effects (OR � 1.5).

It is likely that a gene coding for a particular metabolizing
enzyme confers disease susceptibility in combination with genes
coding for other enzymes involved in the same metabolic path-
way or in combination with other determinants of substrate lev-
els. Therefore, studies should be designed to be able to evaluate
potential gene–gene and gene–environment interactions. The as-
sessment of interactions requires large sample sizes to attain
adequate statistical power, especially when the factors under
study are either very rare or very common or when the magni-
tude of the interaction is modest (9–12). Estrogen-related risk
factors, such as reproductive characteristics or body size, have
small to moderate effects on breast cancer risk, and susceptibil-
ity genotypes, such as those for metabolizing enzymes, are also
likely to have small to moderate effects. Therefore, we expect to
observe modest interactions, unless the genetic or environmental
factors are very rare, and, in both situations, large samples are
needed. The sample size requirements to have an 80% power to
detect an example of a twofold multiplicative interaction (ratio
of stratum-specific ORs of 2.0), as a function of the prevalence
of the environmental and genetic factors, is presented in Fig. 2.
In this example, it is assumed that the genotype effect in the
absence of the exposure and the exposure effect in the absence
of the genotype are both 2.0 and that the genetic and environ-
mental factors occur independently in the population. This figure
indicates that a minimum of about 550 case patients and 550
control subjects will be needed to study this type of interaction
(genotype and exposure prevalence of 30%–50%), and a much
larger sample size will be required to study less common or more
common genetic or environmental factors, especially if preva-
lences are lower than 20%. Similarly, the sample size will in-
crease as the genotype or exposure prevalence becomes larger
than 30%–50%.

The sample size to study multiplicative interactions is mainly
determined by the susceptibility genotype and exposure preva-
lence and by the magnitude of the interaction (11). The magni-
tude of the effect of the genotype in the absence of the exposure
and the effect of the exposure in the absence of the genotype

Fig. 2. Number of case patients required to have an 80% power to detect an
example of a twofold gene–environment interaction with the use of a two-sided
test with 5% Type I error, as a function of genotype and exposure prevalence.

Fig. 1. Number of case patients required to have an 80% power to detect a
genotype effect with the use of a two-sided test with 5% Type I error, as a
function of genotype prevalence and magnitude of effect.
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affect the sample size to a lesser extent. Thus, the sample sizes
illustrated in Fig. 2 will be similar for other examples of twofold
gene–environment interactions in which the genotype or expo-
sure effects are smaller than 2.0. Moreover, the sample size
needed to study a 1.5-fold interaction, rather than a twofold
interaction, will be two to three times higher.

Accurate information is essential for the study of environ-
mental exposures and their potential interactions with genetic
polymorphisms (13,14). Misclassification of exposure, either
differential or nondifferential with respect to disease status, will
tend to underestimate a multiplicative interaction effect, pro-
vided that exposure misclassification is independent of the ge-
notype and that the exposure status is independent of the geno-
type in the population (15). As a consequence, the sample size
required to detect the attenuated interaction with adequate sta-
tistical power will be increased.

The impact of misclassification on estimation and sample size
is highly dependent on the exposure prevalence (13,14). For
instance, the use of an instrument with low sensitivity (propor-
tion of exposed subjects correctly classified) can have a very
strong impact when the exposure frequency is high, but it may
not be so deleterious when the frequency is low. It should also
be taken into account that even small errors in the genotype
determination can have substantial impact on the sample size,
especially when environmental exposure is also measured with
error. The impact of exposure and genotype misclassification on
sample size, when the prevalence of both factors is 50%, is
illustrated in Table 1. The sample sizes correspond to the same
example of gene–environment interaction as in Fig. 2. In the
absence of genotype misclassification, an exposure sensitivity of
80% increases the sample size about 1.7 times (from 590 to 1600
subjects); in the absence of exposure misclassification, a geno-
type sensitivity of 95% increases the sample size 0.5 times (from
590 to 900 subjects). However, in the presence of both genotype
and exposure misclassification, the sample size will be further
increased to 2045 case patients and 2045 control subjects.

Alternative study designs can be more efficient to study in-
teractions under certain circumstances and can address potential
biases common in case–control studies (10,16,17). For instance,
the case-only design can be very efficient in detecting gene–
gene and gene–environment interactions, provided that the genes
and the environmental exposure are independent in the popula-
tion; the case–parental control design addresses the problem of
confounding of gene effects by ethnicity or population stratifi-
cation; and cohort studies can address the problem of disease
bias because biologic samples and questionnaire data are col-
lected prior to the onset of disease. Mixed study designs or
different sampling strategies, such as oversampling women with

a positive family history of breast cancer to increase the fre-
quency of potential susceptibility genotypes, may also help to
address potential biases or increase the efficiency to study par-
ticular hypotheses.

SEX STEROID HORMONES: TECHNICAL HURDLES IN

POPULATION STUDIES

Challenges in Epidemiologic Studies

The epidemiologic study of steroid hormones in relation to
disease risk poses several methodologic challenges. Frequently,
we wish to detect only modest (but etiologically important) dif-
ferences in hormone levels between study subjects. To optimize
the chance of detecting these differences, sources of error and
technical variation in our results must be minimized. Protocols
for the collection, processing, and storage of study urine or blood
samples must be evaluated and optimized. Laboratory assay pro-
cedures must be reproducible, require a small sample volume,
and, preferably, be consistent across studies. In addition, the
ability of a single hormone measurement (as is available in most
population studies) to reflect long-term hormone levels must be
evaluated. Each of these issues is discussed below.

Blood or Urine Collection, Processing, and Storage

Sample Collection

It is important to establish a specific collection protocol that
minimizes the sources of variation in hormone levels that are not
of etiologic interest. These sources of variation include fasting
status, time of day the sample is collected, and, for premeno-
pausal women, phase of the menstrual cycle. Not standardizing
case and control subjects on these factors (in either the design or
analysis phase of a study) could substantially attenuate hormone/
disease associations or, if the distribution of these factors varied
by chance between case and control groups, an association may
be detected that does not in truth exist. For example, several
adrenal androgens [e.g., dehydroepiandrosterone (DHEA)] and
prolactin have substantial diurnal variation (18).

Collecting all blood samples at a single time in the day,
matching control subjects to case patients on the time of sample
collection, or controlling for time of day of collection in the
statistical analysis will remove any noise associated with the
circadian variation in hormone levels.

For premenopausal women, the effect of the menstrual cycle
on hormone levels is important to consider. A number of hor-
mones, particularly estrogens, fluctuate substantially over the
menstrual cycle (18). Thus, similarly to what was described
above, to allow a valid comparison between case and control
subjects, it is necessary to either collect all samples at approxi-
mately the same time in the cycle, match on cycle day, or care-
fully control for cycle day in the analysis. In general, timing the
luteal sample from the first day of the next menstrual cycle is
more accurate than counting from day 1 of the current cycle, as
the luteal phase is more consistent in length than the follicular
phase (19). Accurate matching in the luteal phase requires know-
ing when the next menstrual cycle began (i.e., the cycle after
sample collection). This requires recontacting study participants
(or having the participants recontact study staff by mail, for
example), thus adding an additional challenge to epidemiologic
studies of premenopausal hormone levels. It is in part due to the
complexity of collecting well-timed samples from premeno-

Table 1. Impact of exposure and genotype misclassification on sample size to
detect a twofold interaction*

Scenario
Exposure

sensitivity, %
Genotype

sensitivity, %
No. of

subjects

No misclassification 100 100 590
Exposure misclassification 80 100 1600
Genotype misclassification 100 95 900
Exposure and genotype

misclassification
80 95 2045

*Interaction model described in text; prevalence of both genotype and expo-
sure � 50%; genotype and exposure specificity � 100%.

Journal of the National Cancer Institute Monographs No. 27, 1999 149



pausal women that few studies of premenopausal endogenous
hormones and cancer risk have been conducted.

Sample Processing

Ideally, biologic samples would be processed and either ana-
lyzed or frozen immediately after sample collection. This action
will minimize any deterioration in hormone levels over time.
However, in some large population studies, particularly those
with a geographically dispersed population, immediate process-
ing and storage are not feasible. The effect of delayed processing
and storage on any parameter of interest must be evaluated be-
fore study implementation.

Prior to a large blood collection effort in the Nurses’ Health
Study, the effect of a delay in blood processing on steroid hor-
mone levels was evaluated (Table 2). The stability of endog-
enous hormones in plasma prepared from whole blood that had
been stored for 24 or 48 hours in a sealed Styrofoam mailer
cooled with a frozen gel pack was evaluated relative to samples
that were immediately processed and frozen (20). Overall, the
delay in sample processing resulted in little change in hormone
levels. Estradiol, percentage of free estradiol, androstenedione,
and prolactin all changed by less than 5% per day. The hormone
with the greatest percentage of change per day was testosterone
(9.5% per day). However, even with this degree of change, the
true between-person variation substantially outweighed the error
introduced by the delay in processing and the laboratory analy-
sis, as evidenced by the high intraclass correlation coefficient
[ICC � 0.86; i.e., between-person variation/(between-person
variation + within-person variation)]. More recently, these blood
collection methods have also been evaluated for their effect on
plasma insulin-like growth factor-I (IGF-I) and insulin-like
growth factor-binding protein 3 (IGFBP-3) levels (21). IGF-I
and IGFBP-3 levels in samples that were processed and serum
frozen immediately after venipuncture (the standard processing
methods) were compared with samples that were stored in hep-
arinized whole blood for 24–36 hours before processing (mim-
icking blood collection conditions used in certain studies). The
mean IGF-I and IGFBP-3 values were almost identical, and the
intraclass correlations between results of the two collection
methods were 0.98 for IGF-I and 0.96 for IGFBP-3—again
showing that the collection methods did not adversely affect
sample integrity.

Sample Storage

Freezer alarm and back-up systems must be in place to pre-
vent thawing or warming of study samples. Twenty-four-hour

alarms should be in place, and manual checks of the freezer
temperature should be conducted periodically. For added secu-
rity, each individual’s sample should be split between freezers,
so that, in the event that a freezer thaws, only part of a sample
from any one participant will be lost. To maintain the ability to
identify stored samples, cryotubes should be labeled before
freezing, using labels with adhesive specifically designed for
low temperatures.

Several different freezing options are available: storage in
mechanical freezers at either 20 °C or at −70 °C, or in the vapor
phase (temperature range, −130 °C to −196 °C) or the liquid
phase (constant at −196°C) of liquid nitrogen freezers. Some
concern regarding the suitability of upright front-loading me-
chanical freezers for long-term sample storage was raised in a
study conducted by Su et al. (22). They evaluated temperature
variations in upright mechanical freezers and found that, for
freezers set at −80 °C, the internal temperature ranged from
−90 °C to −43.5 °C, with the warmer regions being the upper and
front sections of the freezers. We are unaware of similar evalu-
ations in chest freezers.

Several studies have used frozen specimens with little if any
sign of degradation in the hormone level. Mean levels of plasma
testosterone, estradiol, androstenedione, and percentage of free
estradiol in samples stored at −70 °C for either 6 or 8 years were
not significantly different, although estrone levels were slightly
higher in samples stored for only 6 years (23). Plasma estradiol,
sex hormone-binding globulin (SHBG)-bound estradiol, free es-
tradiol, and prolactin levels remained stable after archiving at
−70 °C for 6 months to 6 years (24,25). In other study (26), both
estradiol and prolactin were observed to be stable at −70 °C for
3 years; although testosterone levels varied modestly over the 3
years, the rank correlation remained high (approximate r � .9).
In contrast to other steroids, plasma progesterone levels were
reported to decrease by 40% over a 3-year period, although,
again, the rank correlation over time was high (r � .98). How-
ever, in a second study (27) in which plasma was stored at
−20 °C, progesterone levels were reported to increase 2.8% per
year of storage. Thus, the stability of plasma or serum proges-
terone levels over time is uncertain, and additional evaluations
are needed. Stability of samples in −70 °C or colder over a
period of more than 8 years has not yet been evaluated. Although
DHEA sulfate has been reported stable when stored at −20 °C
for 10–15 years (28), the percentage of free (versus bound)
estradiol (29) and testosterone (30) has been reported to increase
significantly with storage at this temperature; thus, freezing at
−70 °C or colder is preferred.

Although the above studies suggest that hormone levels tend

Table 2. Plasma hormone levels from postmenopausal women according to delay in processing specimens after phlebotomy

Hormone

Mean hormone levels according
to delay in processing after phlebotomy

% change
per day* CVb /CVw†0 h 24 h 48 h

Androstenedione, ng/L 516 493 482 −3.4 (−6.9, 0.2) 3.0
Estradiol, ng/L 19 19 20 3.5 (−1.7, 8.7) 1.5
% free estradiol‡ 1.8 1.9 1.8 −1.3 (−4.7, 2.1) 4.0
Prolactin, mg/L 8.8 8.9 8.8 −0.4 (−1.9, 2.7) 9.2
Sex hormone-binding globulin, nmol/L 31.3 30.1 32.1 1.3 (−2.4, 5.0) 4.4
Testosterone, ng/L 221 242 262 9.5 (1.7, 17.3) 3.5

*Numbers in parentheses � 95% confidence intervals associated with the percent change per day.
†Ratio of the between-person (CVb) and within-person (CVw) coefficients of variation.
‡n � 5; all others, n � 9 subjects.
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to be stable for relatively long periods if stored at −70 °C or
colder, it remains advisable to match case patients and control
subjects on length of sample storage to minimize the effect of
any modest changes on case/control comparisons. In addition,
we are not aware of data that address the stability of hormone
levels with repeated freezing and thawing of the biologic mate-
rial; thus, it is recommended that freeze/thaw cycles be mini-
mized.

Validity of Using a Single Sample per Subject

Although average long-term hormone levels are often of pri-
mary interest in epidemiologic studies of hormones and cancer,
for both economic and logistical reasons, frequently only one
blood sample is collected per study subject. The degree to which
this one sample can represent an individual’s long-term levels
depends on the degree of within-person variation (relative to the
between-person variation) over time. The more representative a
single sample is of long-term levels, the greater the chance of
detecting true differences between study subjects. This issue has
been evaluated in several studies.

Correlations for plasma estrogens over approximately a
2-year period in postmenopausal women ranged from 0.36 (31)
to 0.94 for the percentage of bioavailable estradiol (Table 3)
(25). How well a single postmenopausal hormone measure re-
flects levels over a 3-year period was evaluated and an ICC of
0.66–0.92 was found for the sex steroid hormones (32). Prolactin
had a somewhat lower ICC of 0.53. For IGF-I, among 24 adults
who had two blood samples drawn on average 6 weeks apart, the
ICC was 0.94 (P � .001) (33).

In a study of 26 premenopausal women in which two luteal
phase samples were collected about 1.5 years apart, the corre-
lation for the repeated samples was 0.70 for androstenedione and
0.73 for testosterone (Table 3) (34). In samples from 71 pre-
menopausal women that were collected randomly throughout the
menstrual cycle over a 1- to 2-year period, the ICC was 0.72

(95% confidence interval [CI] � 0.57–0.83) for percentage of
free estradiol and 0.83 (95% CI � 0.73–0.90) for SHBG-bound
estradiol (“nonbioavailable” estradiol) (25). In the same study
(24), the ICC for prolactin was 0.48 (95% CI � 0.31–0.63).
More recently, repeated luteal phase samples were collected 1
year apart from 60 premenopausal women; the ICCs were 0.85
for DHEA sulfate and 0.60 for total testosterone (35). In a study
of urinary estrogen metabolite levels, the ICC for the ratio of
urinary 2-hydroxyestrone to 16-�-hydroxyestrone over a
6-month period was 0.67 (36).

In the study by Muti et al. (35), the ICC for estradiol in the
luteal phase was reported to be just 0.06, suggesting extremely
poor reproducibility over time. However, this result may be
related to the investigators’ inability to exclude women with
anovulatory cycles or to pinpoint when in the menstrual cycle
the sample was collected. (In this study, the samples were col-
lected on days 20–24, counting forward from day 1 of the cycle,
and the date of start of the next menstrual cycle was not avail-
able). In a more recent study (37), we found much higher re-
producibility (ICC � 0.62) over a 1-year period when we in-
cluded only ovulatory women who provided their samples in the
midluteal phase of their cycle. Thus, the reproducibility of es-
tradiol levels (in the same phase of the cycle) in premenopausal
women needs further evaluation. Intraclass correlations for
plasma estrogens from the largest studies to address this issue
are provided in Table 3.

Although the data are not entirely consistent, in general, this
level of reproducibility (ICC of 0.5–0.8) is similar to that found
for other biologic variables, such as blood pressure, pulse, and
cholesterol measurements, all exposures that are considered to
be reasonably well measured and are consistent predictors of
disease in epidemiologic studies (38). Of note, reproducibility
data such as these (that measure within-person variation in levels
over time) can also be used to explicitly correct for measurement
error in studies of plasma hormones and disease risk (39).

Assay and Laboratory Precision

Overview

In contrast to clinical needs, in epidemiologic studies we are
generally interested in detecting modest differences within the
normal range of hormone levels; laboratory error could easily
result in true (and important) associations being missed. This
issue has been particularly important in the measurement of
plasma estrogens in postmenopausal women, as normal levels
are in the picogram per milliliter range and between-person
variation in levels is relatively small. Given the limited quantity
of plasma collected in most population studies, being able to
conduct the assay with a small plasma volume is also important
and makes high reproducibility (and high sensitivity) even more
difficult to achieve. Another issue is the varying sensitivity and
specificity of hormone assays used by different laboratories and,
thus, by different epidemiologic studies. These differences make
the comparison of findings between published studies difficult.

Reproducibility and Validity of Hormone Assays

Several studies have been conducted to assess the ability of
laboratories to reproducibly measure plasma steroid levels in
postmenopausal women (40–43). We sent replicate samples of
plasma to each of four well-established endocrine laboratories in
the United States on one or two separate occasions. All replicate

Table 3. Intraclass correlation coefficients (ICC) and 95% confidence
intervals (95% CI) for plasma estrogens in samples collected over a 1- to

3-year period

Hormone
No. of
women ICC 95% CI

Among postmenopausal women*
Estradiol 79 0.68 (0.59–0.80)
% free estradiol 79 0.80 (0.73–0.87)
% bioavailable estradiol 79 0.86 (0.82–0.92)
Estrone 79 0.74 (0.66–0.83)
Estrone sulfate 79 0.75 (0.67–0.84)

Among premenopausal women
Estradiol (luteal phase)† 60 0.06 (0.00–§ )
% free estradiol‡ 71 0.72 (0.57–0.83)
% SHBG estradiol‡ 71 0.83 (0.73–0.90)
Estradiol (luteal phase)� 39 0.62 (0.43–0.78)
Estradiol (follicular phase)� 85 0.53 (0.37–0.67)

*Hankinson et al. (32); three measurements collected over a 2- to 3-year
period.

†Muti et al. (35); two measurements collected over a 2- to 3-year period.
‡Toniolo et al. (25); two to three measurements collected over a 2- to 3-year

period. SHBG � sex hormone-binding globulin.
§Not provided.
�Two measurements over a 1-year period (37). Luteal phase estradiol was

calculated among women with progesterone level � 300 ng/dl who collected
each sample 4–10 days before the start of the next cycle.
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samples were handled identically during processing, storage,
and retrieval, and they were labeled to preclude their identifica-
tion by the receiving laboratory. The within-person coefficient
of variation, a measure of laboratory error frequently reported by
laboratories, was consistently low (<15%) for several hormones.
For estrone and estradiol, however, hormones present at low
levels in postmenopausal women, the laboratory error was often
large (>25%), and the ratio of between-person variation to labo-
ratory error was often less than 2.0. Several other studies have
also reported variability in assay reproducibility of both plasma
(41,42) and urinary (43) steroid hormones, although results de-
pended on the laboratory conducting the assay, the specific hor-
mone, and the menopausal status of the woman.

A number of factors may have influenced the variable repro-
ducibility observed. First, differences in laboratory methods may
be important. For example, in our study, although all laborato-
ries used radioimmunoassay (RIA) to measure estradiol, two
laboratories used celite column chromatography and one labo-
ratory used LH20 Sephadex column chromatography prior to
RIA, whereas the fourth laboratory did not use a separation step
prior to RIA. The laboratory method could not have been the
only source of error, however, because results also varied within
a single laboratory (e.g., the CV for estradiol ranged from 8% to
59%). These substantial differences might relate to a change
either in the laboratory personnel or in the reagents and equip-
ment used in the assays or perhaps varying levels of performance
by the same technician or piece of equipment over time. In
addition, some laboratories may be set up primarily to assay
clinical specimens. The level of error tolerable in a clinical set-
ting, in which the distinction between normal and abnormal
hormone levels is of primary interest, is substantially greater
than that which can be tolerated in epidemiologic research, in
which relatively small differences within the spectrum of normal
hormone levels are the subject of investigation.

Another technical challenge in studies of hormones is that a
number of different laboratory methods are used to measure the
same hormone, and no standardization or validation programs
exist. For example, in several studies in which plasma estradiol
was measured in postmenopausal women, mean levels were 9
pg/mL (44), 13 pg/mL (45), and 28 pg/mL (46). To what degree
these differences represent different study populations or simply
differences in laboratory methods is unclear and complicates any
comparison of results between the studies. The comparison of
different laboratory methods against a “gold standard” would be
helpful in resolving this issue; however, it is unclear which
analytic method would be most appropriate as the gold standard.

Summary and General Recommendations

On the basis of our current knowledge, several recommenda-
tions can be made to epidemiologists wanting to use hormone
measurements in their research. Close collaboration with labo-
ratory experts should be obtained in the planning stages of a
study and should continue through its conclusion. Any variation
from the standard collection and processing procedures should
be evaluated prior to their implementation. Before having any
study blood samples analyzed, laboratory performance should be
independently evaluated. After this initial assessment, a propor-
tion of samples sent to the laboratory with each batch of study
samples should be quality-control specimens that are indistin-
guishable from the case and control specimens. Matched case–
control pairs should be handled identically and together, shipped

in the same batch, and assayed in the same analytical run. All
assays should be conducted without knowledge of the case/
control status. Identical handling of all case and control speci-
mens is critical to validity, as any possible deterioration related
to collection, processing, or storage should affect case and con-
trol specimens equally and will not appreciably affect measures
of association. Finally, collection of repeated blood or urine
samples from a subset of study subjects should be considered;
this collection will allow both the evaluation of within-person
variability over time and the use of measurement error correc-
tion techniques in the calculation of relative risks.

FOURIER TRANSFORM-INFRARED/STATISTICS MODELS

Fourier transform-infrared (FT-IR) spectra of DNA have re-
vealed major structural differences at various stages in the pro-
gression of morphologically normal estrogen-responsive tissues
(ERT) to cancer (1–5). Reactions of the hydroxyl radical (�OH)
with the base (1–6,47–50) and deoxyribose (1–5) structures have
been implicated as major contributors to these modifications,
although other factors, to include hypermethylation (51) and the
formation of depurinating adducts (52), may modify DNA spec-
tra. In ERT (e.g., the human breast), the �OH is believed to arise
from the metal-catalyzed decomposition of H2O2, which is pro-
duced from redox cycling of catechol estrogen metabolites (48)
and certain xenobiotics (e.g., aromatic hydrocarbons) (53). The
structural differences are evident from wavenumber-by-
wavenumber statistical comparisons of the mean FT-IR spectra
of DNA (extracted with pheonol) (1) from normal and trans-
formed tissues (e.g., normal prostate versus prostate cancer) (5).
Principal component analysis (PCA) (4) allows most of the in-
formation in each spectrum to be represented by a few principal
components (PCs), the first three usually accounting for more
than 80% of the total variance. Each PC score is a weighted sum
of spectral absorbances. Plots can be constructed on the basis of
the first two or three PCs. In these plots, a point represents a
single spectrum, and groups (clusters) of points represent the
DNA from a particular tissue type (e.g., prostate cancer). In the
carcinogenic transformation of one tissue type to another (e.g.,
normal → cancer), the location of the cluster and its diversity in
PC space are important measures of DNA change (49). When
spectral differences exist between the DNA of tissue groups in a
disease progression (e.g., normal tissue → cancer), discriminant
analysis can be used to establish cancer prediction models, such
as those reported for breast (1,4) and prostate (4,5) cancers.

Prototype prediction models, based on multivariate analysis
of infrared spectral data, have been developed, and they have an
ability to potentially differentiate between tissue groups that
were not satisfactorily differentiated by simpler statistical mod-
els. These models can potentially distinguish nonmetastatic pri-
mary tumors from those with disseminated metastases. Ex-
amples of FT-IR/statistics models for predicting cancer-related
changes in DNA prior to evidence for cellular transformations
are presented, together with discussion of their clinical and etio-
logic implications.

Significant differences were found between the mean absor-
bances of DNA from the morphologically normal ovary (On) and
ovarian adenocarcinoma (AC) over most of the spectral region
(Fig. 3, A) (54). The P values are presented for each wavenum-
ber (Fig. 3, B). Statistically significant differences (from about
1650 cm−1 to 1680 cm−1, 1200 cm−1 to 1260 cm−1, and 1000
cm−1 to 1150 cm−1) are evident in spectral areas assigned to
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vibrations of the nucleotide bases, the PO2
− group and deoxy-

ribose, respectively (54). PCA of the spectral data provided two
major PCs that were plotted against each other (Fig. 3, C). The
plot revealed that the On formed a tight, ordered group of points,

whereas the ACs were highly diverse and relatively disordered.
The relationship between the probability of ovarian cancer and
the risk score derived by discriminant analysis is shown in Fig 3,
D. The ovarian cancer group is located primarily at the top of the
sigmoid-like curve, and the noncancer group is located at the
bottom. The predicted probability scores rise rapidly over a nar-
row range, which reflects a high degree of discrimination be-
tween the groups. The disorder reflected in the AC and the
metastasized primary ovarian adenocarcinomas (ACm) contrasts
with the order in the On and distant ovarian metastases to the
colon (ACdm), as apparent from the mean spectral comparisons
(Fig. 4, A) and the PC plot in which the points of each group
substantially overlap (Fig. 4, B) (54). Despite the inability to
discriminate between the two ordered DNA systems with the use
of spectral comparisons and PCA, comparisons of standard de-
viations of absorbances at each wavenumber over the entire
spectral range revealed increased spectral diversity in the ACdm

in regions assigned to base vibrations but not in those relating to
the furanose ring. This finding is consistent with the presence of
increased base mutations in the DNA of the distant metastases
(54).

Comparisons of the mean spectra of DNA from morphologi-
cally normal breast tissues obtained from breast reduction sur-
gery (reduction mammoplasty tissues, RMT) and invasive ductal
carcinoma (IDC) tissues revealed characteristic differences in
spectral regions assigned to the base and deoxyribose structures
(1–4). A three-dimensional plot of the points from PCA is given
in Fig. 5, A. The points representing the RMT are clustered
primarily in the upper-left region of the plot. The IDC, compris-
ing primary tumors with and without evidence for axillary me-
tastases, are broadly dispersed, thus indicating considerable
structural diversity. Discriminant analysis of the spectral data
provided a relationship between the probability of cancer and the
risk score (Fig. 5, B), having a sensitivity of 86% and a speci-
ficity of 81%. The DNA of “benign” (microscopically normal)
tissues from near the breast tumors of 11 women (not included

Fig. 3. Spectral comparisons of ovarian DNA (53). A) Grand mean DNA spectra
of morphologically normal ovarian tissue (On; n � 13) and primary ovarian
adenocarcinoma (AC; n � 6); B) P values for spectral comparison in A (unequal
variance t test) (53); C) principal component (PC) plot comparing spectra of
ovarian DNA from morphologically normal tissues (On) and primary adenocar-
cinoma (AC) (53); and D) plot of the probability of ovarian cancer with the risk
score for the On and AC. The null hypothesis that the PC scores do not dis-
criminate between the groups is rejected with P<.001. Reprinted with permission
© 1998 from the National Academy of Sciences, U.S.A.

Fig. 4. Spectral comparisons of ovarian DNA (53). A) Mean spectra of DNA from the morphologically normal ovary (On; n � 13) compared with mean spectra
of DNA from ovarian adenocarcinoma metastases to the colon (ACdm; n � 7); B) principal components plot comparing the mean DNA spectra from each group
shown in A. Reprinted with permission © 1998, National Academy of Sciences, U.S.A.
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in the predictive model) was analyzed (4). When the scores were
used in the breast cancer probability-risk score model (Fig. 5, B),
10 of 11 had a predicted cancer probability of more than 75%.
This finding is consistent with data showing that tissue near a
breast tumor has a high risk for forming a second cancer lesion
(55).

In studies of the human prostate, the mean spectral differ-
ences between the DNA of normal tissue and the DNA of pros-
tatic adenocarcinoma were substantial. The PC plot revealed
pronounced discrimination between DNA spectra of normal and
cancer tissues (4,5). A similarly effective separation was ob-
tained between the clusters of DNA points representing normal
tissue, prostatic cancer, and benign prostatic hyperplasia (BPH)
(Fig. 5, C). The discriminant analysis models that predict disease
probability (normal prostate tissue versus prostate cancer; nor-
mal prostate tissue versus BPH) had sensitivities and specifici-
ties of 100% for both comparisons. These models are based on
more PC scores than the two-dimensional PC plots. The rela-
tionship between the normal prostate DNA and the DNA of
prostatic adenocarcinoma, expressed in terms of cancer prob-
abilities, is shown in Fig. 5, D.

Prototype statistical models, based on FT-IR spectroscopy,
are being tested in our laboratory. These models hold promise
for distinguishing the DNA from primary tumors and metasta-
sizing primary tumors (those that have given rise to dissemi-

Fig. 6. Three-dimensional ellipsoids based on a multivariate model for principal
component (PC) scores of DNA spectra of invasive ductal carcinoma (IDC) and
metastasized IDC (those that give rise to disseminated metastases; IDCm). The
ellipsoids contain an expected 90% of the population of each group (e.g., IDC
samples). (See text for details.)

Fig. 5. Spectral comparisons of breast DNA (4). A) Three-dimensional plot of
principal component (PC) scores of DNA spectra from normal breast (n � 21)
and breast cancer (invasive ductal carcinoma [IDC]; n � 37) tissues showing
distinct clustering of each group (1,3); B) plot of the probability of cancer with
the risk score for the normal breast and breast cancer. The null hypothesis that
the PC scores do not discriminate between the groups is rejected with P<.0001
(1); C) two-dimensional plot of PC scores of DNA spectra from normal prostate

(n � 8), benign prostatic hyperplasia (BPH; n � 18) and prostate cancer
(adenocarcinoma; n � 8) in which the clustering is distinct (5); D) plot of the
probability of cancer versus the risk score for normal prostate and prostate
cancer. The null hypothesis that the PC scores do not discriminate between the
groups is rejected with P � .009 (5). Reprinted with permission by Nature
Medicine. Portions A and B originally appear in Nat Med 1997;3:927–30.
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nated metastases). The FT-IR/statistics models based on simple
linear logistic regression, such as those shown in Fig. 5, B, did
not effectively differentiate these groups. By use of models
based on multivariate normal distributions of the first three PCs,
a three-dimensional projection (Fig. 6) was constructed to con-
tain a designated percentage (i.e., 90%) of the population of a
group. In a model with 90% probability, such as that shown in
Fig. 6, a randomly selected IDCm spectrum would likely fall
inside the appropriate three-dimensional figure (i.e., only an ex-
pected 10% of DNA spectra in the population of IDCm spectra
would fall outside the model). By use of this DNA model, nor-
mal breast tissue (RMT), primary breast tumors (IDC), and me-
tastasizing primary breast tumors (IDCm) were correctly classi-
fied as follows: 89% (16 of 18), 97% (31 of 32), and 82% (18 of
22), respectively. The discrimination between the IDC and the
IDCm is a potentially important basis for identifying metastasis
in primary tumors, prior to evidence for malignant cells at dis-
tant sites. The prototype model (Fig. 6), which is presently based
on a limited number of samples, can be applied to other systems
having larger databases.

The FT-IR/statistics models have the ability to identify subtle
changes in DNA in relation to the progression of normal tissues
to diseased states. We are unaware of other techniques with the
power to accomplish such a high degree of discrimination be-
tween DNA of natural systems. It is now possible to analyze less
than 1.0 �g of DNA with the use of FT-IR spectral techniques
recently developed in our laboratory. This will eventually allow
the FT-IR/statistics technology to be applied to less than 1.0 mg
of tissue, thus broadening the application to small biologic
samples (e.g., fine-needle biopsy tissues). Future uses of the
technology would be expected to encompass diverse areas of
cancer research and clinical practice, as previously described
(4). For example, with the use of the FT-IR/statistics technology,
the potential exists for detecting early cancer-related changes at
the level of DNA, rather than at the cellular level, thereby af-
fording a distinct advantage in patient treatment.
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